
SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE Form Approved 
OMB NO. 0704-0188 

^m«^^l^^^ml^«^^ 'n,°rma"0" ,s «""«atea to average 1 hour per response, mcluding me lime tor reviewing instructions, searching existing date source.. 
£i~ «?, J „Sflif L- 9 t^-da"   6M6°' an°. com°l6lin9 »na reviewing the collection ol information. Send comment regarding mis burden estimates or any othe? aspect of this 
:       Hlii»   T m ?™/T,  9,SU9?,ei

SÜS^ni°:S?UCin9 m,s bu,Sen',0 Washington Headauarters Services. Directorate tor information Operations and Reports. 1215 Jetlerson 
-avis Highway. Suite 1204. Arlington. VA 22202-4302. ana to the Ott.ce ot Management ana Budget. PaperworK Reduction Proiect (0704-0188). Washington. OC 20503. 

1. AGENCY USE ONLY (Leave DlanK) 2.  REPORT DATE 

July   1997 
3.  REPORT TYPE AND DATES COVERED 

4.  TITLE AN0 SUBTITLE 

Further  Results  Based  on Chernoff-Type  Inequalities 

Technical - 

6. AUTHOR(S) 

G.R. Mohtashami Borzadaran and D.N. Shanbhag 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 
Center for Multivariate Analysis 
Dept. of Statistics 
417 Thomas Bldg 
Penn State University 
University Park, PA 16802 

9      SPONSORING / MONITORING AGENCY NAMEfSi AND ADDRESS(ES) 

U.S. Armv Research Office 
P.O. Box'12211 
Research Triangle Park, NC 27709-2211 

11. SUPPLEMENTARY NOTES 

97-11 
5.  FUNDING NUMBERS 

DAAH04-96-1-0082 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

97-11 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

A&o 3s&*'IS'** 

The views opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a.  DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

In this paper, we address questions dealing with characterizations based on Chernoff-type 
moment inequalities and their variants and establish, via the approach of Alharbi & 
Shanbhag (1996), a general theorm extending, among others, various results of Cacoullos 
& Papathanasiou (1995a, 1995b). 

a*rc 

14.  SUBJECTTERMS   TVl„ rl,n„„rf    . , . _ „       . 
The Chernoff-inequality, Variance Bounds, Lebesgue- 

Stieltjes Neasure, Hazard measure, Characterizations, the Cox 
Representation. 

17 SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 
NSN 7540-01-280-5500 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

15. NUMBER IF PAGES 

10 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



FURTHER RESULTS BASED ON CHERNOFF-TYPE 

INEQUALITIES 

G.R. Mohtashami Borzadaran and D.N. Shanbhag 

Technical Report 97-11 

July 1997 

Center for Multivariate Analysis 
417 Thomas Building 
Penn State University 

University Park, PA 1CS02 

The research work of the author was supported by the Army Research Office under Grant 
DAAHO4-96-1-0082. The United States Government is authorized to reproduce and dis- 
tribute reprints for governmental purposes notwithstanding any copyright notation hereon. 

19970819 117 
Typeset by .4^5-TßX 



Further Results Based on Chernoff-type Inequalities 

G. R. Mohtashami Borzadaran * 
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Abstract 

In this paper, wo address questions dealing with characterizations based on Chernoff- 

type moment inequalities and their variants and establish, via the approach of Alharbi & 

Shanbhag (199G), a general theorem extending, among others, various results of Cacoullos 

& Papathanasiou (1995a, 1995b). 

AMS classification : Primary 62E10; Secondary 60E05, 60E15 

Keywords: The Chernoff-incquality, Variance Bounds, Lebesgue-Stieltjes Measure, Hazard mea- 

sure, Characterizations, The Cox Representation. 

1    Introduction 

There is an extensive literature dealing with upper and lower bounds for the variance of 

a function of a random variable : Chernoff (1981) gave a bound for the variance of an abso- 

lutely continuous function (w.r.t. Lebesgue measure) of a normal random variable. Cacoullos 

(1982) and Klaassen (1985) obtained variations of the inequality relative to other distributions 

and also gave the corresponding lower bounds. Borovkov h Utev (1983), and several oth- 

ers, gave characterizations via Chernoff-type inequalities. During the last fifteen years or so, 

many papers have appeared on modified versions or variants of the Chernoff inequality and 

*This author's research is supported by the University of Birjand, Birjand, IRAN. 
'Correspondence author. 
*This author's work is supported by the US Army Research Grant DAA H04-96-1-0082. 



related characterizations. Variations or extended versions of these latter results and character- 

izations relative to Chernoff-type inequalities have been obtained by Cacoullos k Papathana- 

siou (1985,1989,1992,1995a,1995b), Chen (1982), Koicheva (1993), Parakasa Rao k Sreehari 

(1986,1987,1995), Srivastava k Sreehari (1987,1990), Parakasa Rao (1992), Purkayata k Bhan- 

dari (1990), Hwang k Sheu (1987) and Korwar (1991) among others. Alharbi k Shanbhag 

(1996) extended some of these results to a more general set-up relaxing the assumption that 

the distribution is absolutely continuous (w.r.t. Lebesgue measure) or it is purely discrete. 

We now use the Alharbi-Shanbhag ideas to extend and unify further results in the literature, 

including among others, those of Cacoullos k Papathanasiou (1995a, 1995b). We also give here 

a relevant representation concerning the distributions that are characterized. The results in Ca- 

coullos k Papathanasiou (1995a, 1995b), in turn, subsume many of the earlier characterizations 

based on variance bounds. 

2    General Characterizations Based on the Chernoff-type In- 

equality 

Alharbi k Shanbhag (1996) extended the theorems for distributions based on a version of 

the Chernoff inequality to the case where distributions are not necessarily purely discrete or 

absolutely continuous. Among the theorems they have established is the following theorem : 

Theorem 2.1 Let F* be a non-constant Lebesgue-Stieltjes measure function on 3? and vp- 

be the measure on the Dorel a— field of 5R determined by it. Let X be an r.v. such that 

E{F*(X)} = fi, and E({F*(X)}2) < oo and w be a Dorel measurable function such that 

w(X) > 0 a.s. and Var{F*(X)} = E{w(X)}. Further let r be the class of real-valued absolutely 

continuous functions g with Radon-Nikodym, derivative g' w.r.t. the measure up> (i.e. such that 

<){b) - </(«•) = ./(„(,Kr/(T)^F'(''0 for all a and b with a < b), satisfying E({g(X)}2) < oo and 

0 < E{w{X)[g'(X)}2} < oo.  Then 

h
0?rE{w(X)W(X)V}-   ' [) 

if and only if 

w(x)dF(x) = { I      \F*{z) - n\dF(z)}dvF.(r), x € «, (2) 
•'[.T,Oo) 

where F is the df of the r.v. X . 

They also established that if X, w, g and r are as in the above theorem but with E{w(X) \ 

g'{X) |} < oo and E{w(X)g'{X)} ^ 0 in place of 0 < E{w(X)[g'{X)]2} < oo, then the assertion 



of the theorem holds with 

Var[g(X)]Var[F*(X)} 

oer      E2{w{X)g'{X)} ' [ö) 

in place of (1). (Incidentally, this latter result is our Corollary 2.6 given below.) 

General theorems of Alharbi & Shanbhag (1996), subsume known results relative to distri- 

butions that are absolutely continuous w.r.t. Lebesgue measure and those relative to purely 

discrete distributions. Using the ideas in this latter paper, we now extend major results of Ca- 

coullos &; Papathanasiou (1995a, 1995b) on covariance identities and variance bounds, to have 

results essentially in the spirit of the results of Alharbi &: Shanbhag (1996) stated above. We 

also give a representation for distributions, linked with our results. 

Theorem 2.2 Let F* be a non-constant Lebesgue-Stieltjes measure function on 3? and vF* be 

the measure on the Dorel a- field of^St determined by it, and let h* and Z be Borel measurable 

functions. Let X be an r.v. with df F such that h*(X) is integrable with // = E[h*(X)] 

and E{\Z(X)\I{xe(a,b)}) < °o for every -oo < a < b < oo and satisfying the condition 

that liminfT^00(h*(.7:) - fi*) > 0 if the right extremity of F equals oo, and the condition that 

liminf3:__00(/i* - h*(x)) > 0 if the left extremity of F equals -oo. Further let r be the class 

of real-valued absolutely continuous functions g with Radon-Nikodym. derivative g' w.r.t. the 

measure vF. (i.e. such that g(b) - g(a) = \'{ah] g'(x)dvF.(x) for all a and b with a < b). Then, 

we have the condition 

Cov{g{X), h*(X)} = E{Z(X)g'(X)}, (4) 

m,et for all g with E( \ Z{X)g'(X) | ) < oo, if and only if 

Z(x)dF(x) = { f       [h*(z) - ,i*]dF{z)}dvF.(x), x € X. (5) 
•'[x,oo) 

(We read (4) as the condition where the left hand side of the identity is well defined and equals 

the right hand side of the identity.) 

Proof: The " if " part can be proved via an extended version of the argument as in Alharbi &; 

Shanbhag (1996) by applying Fubini's theorem as follows: 



(5) implies that 

E{Z(X)g'(X)}    =    [g'(x){[      [h*(z) - ß*\dF(z)}dvF.{x) 
■m ./[.r,oo) 

=     f      g'(x){[      [h*(z)-fF}dF(z)}duF.(x) 
■l[a,oo) J[x,oo) 

+    [ g'(x){[ W-h*(z)]dF(z)}dvF.(x) 
•'(—oo,a) ./(—00,1) 

=     /       {g(z)-g(a))[h*(z)-^]dF(z) 
■l[a,oo) 

+     / {g(n)-g(z))[fi*-h*{z)}dF(z) 
•/(—oo,a) 

=   Cov{h*(X),g(X)}. (6) 

It is easily seen that Fubini's theorem applies here.   The " only if " part could be proved as 

follows : 

We have 

E{Z(X)g'(X)} =  ! gl(x)Z(x)d,F(x) 

and with a € SR, 

Cov{g(X),h*(X)}    =   E{g(X)[h*(X)-E{h*(X)))} 

=     [ g(x)[h*(x)-ß*]dF(x) 

=    / (<?(«■) + /     <7'(?y)^F* (y)) [h*(x) - S}dF(x) 

=     [   I      r/(y)dvF.(y)[h*(x)-,i*]dF{x) 
■m-f(a,x] 

=     / /      g'(y)dvp'(y)[f)*{x) — n*}dF(x) jiomi.m.bcr 
■I (a,oo) ./ [a,x] 

-     f [     g'(y)dvF.(y)[h*(x)-n*]dF(x) 
■'(—oo,a] ■/(x,a) 

•'(a,oo)     ''[i/.c») 

+     / (/       [/i*(:r)-/i»]r/F(.r))r/(?y)rf«//r.(!!/) 
• '(—oo,fi]     • '[?;, oo) 

=     /(/        [^(^-MlrfFC-rJJf/Ci/Jrfi/r^y). 
•/!R    .%,oo) 

Let —oo < a < 6 < oo and let g be absolutely continuous w.r.t. vp> such that 

0 if x £ (a, 6) 

1 if x e (a,b). 

Then 

/     Z(x)dF(x) = f      (f      [h*(y) - iM*}dF(y))dvF.(x), 
■l(a,b) ■/(a.fc)     ■/f.x.oo)  

</(*) = 



for all arbitrary a, b > 0. This implies that 

( /       (h*(t) - ß*))dF{t))dvF.{x) = Z(x)dF(x), 
■l[x,oo) 

which is (5). 

Theorem 2.3 Let X, g, r, Z and h* be as defined in Theorem, 2.2, but additionally with 

h* absolutely continuous w.r.t. up-, g(X) square integrable and E{Z(X)g'(X)} defined and 

nonzero for every g e r, and h*(X) nondegenerate integrable satisfying 

Var{h*(X)} = E(Z(X)h*'(X)). (7) 

Then 

:_c Var[g(X)]Var[V(X)] 
'Mr      &{Z(X)g>(X)}       -1' (8) 

if and only if (5) holds. 

Proof: We shall first establish the " if " part; note that (8) is equivalent to 

Var{g(X)}Var{h*(X)} > E2{Z(X)g'(X)}, g € r, (9) 

since the equality in (9) holds if g = h*. Clearly, if we assume (5), we have 

E{Z(X)g'(X)} = Cov[g(X)J,*(X)}, (10) 

as seen in Theorem 2.2. Note now that the equality in (9) holds if g(.) = />.*(.)• Hence, under 

the stated assumptions, 

E2{Z{X)g'(X)}    =    {Cov[g{X\h*{X))}2 

<    Var\g(X)]Var[h*(X)], (11) 

with equality in (11) if g = h*. This establishes the " if " part of the theorem. The " only if " 

part of the theorem may be proved by extending the method of Alharbi & Shanbhag (199G) as 

follows: 

Let (a, b) be a bounded open interval and 

/  Ü    \lxi{a,b) 
k(x) = I 

(   1    if .r6 (a, b). 

For any real 9, we define 

g{x) = h*(x)-ß*+0 I k(y)duF.(y),   x e K. 
■/(—oo.xl 



Clearly, in view of the relations (7) and (8) 

Var{h*(X)} + 02Vnr{ [ k{y)dvF*(y)} 
■l(-oo,X] 

+    26Cov{h*{X)-ti*,   [ k{y)dvF.(y)} 
■l(-oo.X\ '(-0O.X] 

>   E[Z{X)h*'{X))\ + —L—fiE?[Z{X)k(X)] 

+   26E[Z(X)k{X)}. (12) 

We see that 

+   20(Cov{h*(X)-n\   [ k(y)dvF.(y)} 
.l(-oo,X\ 

-   E[Z{X)k{X)}) > 0. (13) 

Because (13) holds for all 9, it implies 

Cov{h*(X) - /x*.   I k(y)duF.(y)} = E[Z(X)k(X)}. 
■l(-oo,X] 

In view of Fubini's theorem 

/     Z(x)dF(x) = [     { f      [h*(z) - ii*]dF(z)}dvF,(x), 
J(a,b) J(a,b)   ./[.T,OO) 

which implies (5). Hence we have the theorem. 

Corollary 2.4 Let X and g and T be as defined the same as Theorem 2.1, but with E{w(X) \ 

g'{X) |} < oo. Then 

Cov{cj(X), F*(X)} = E{w(X)g'(X)}, (14) 

for all g if and only if (2) holds. 

Proof: The corollary follows easily from Theorem 2.2 on taking h*(.) = F*(.) and noting that 

the assumptions of the theorem are met. 

Remark 2.5 One could also use an argument based on Fourier transforms to prove the " only 

if " part of Theorem 2.2 and hence implicity of Corollary 2.4. 

Corollary 2.6 (Alharbi &: Shanbhag (1996)).   Let X,  h*,  Z, g and r be as defined in 

Theorem 2.3, but with h* = F*. Then 

Var[g(X)}Var[F*(X)} _ 

It    EHZ(XMX)}    -1' (15) 

if and only if (2) with Z in place of w holds. 



Proof: The corollary follows immediately from Theorem 2.3 on taking h* = F*: 

The following theorem gives a criterion under which any F satisfying (4) is identified by 

(h*,F*,fi*,Z): 

Theorem 2.7 Suppose a € 5ft, and in (5), Z(.) ^ 0 a.e. vF>, and (Z(.))~l and h'{z\~f   are 

vp*-integrable on every bounded interval, such that, for each x 6 5ft, 

/,/     :~[     , ( Ei ^ZM ^) JJ^WVI^F. (V2)...d»F. fa) -+ 0 as  n -> oo,   (16) 
■>[a,x) J[a,yn)       -l[a,y2)     i=l ^\Hi) ^\Vn) 

where we define j^y) = - j^ya) if y < a. Then, if F is a distribution function satisfying (5), we 

have for every x 6 5ft, 

FW = FW + c£(-ir /   f      f    ij[
l£!fL-£)   i   ll/F.im)...dUF.(,M)i 

n=\ •>[i,x)J[a,yn)       ■l[a,y2)     i={ ^\Ui) ^\Vn) 

(17) 

Where I[a,yn) - /|«,w) ( Ilfel1 ^^f1) zfe » to 6e read aS Zlky #" = X> ^) = 1-^-). * € 

», andC = f;{(/i*(X)-/x*)J{x>a}}. 

Proof: We have, under the stated assumptions, 

F(x) =  /   J^r^f    (h*(yi)-tndF(yi))dvF.(y2) 
■t[x,oo) ^\V2)    .%2,oo) 

=  F(n)-/    7^7T(/     ^*(yi)-fndF(yi))duF.(m) 
./[„,*) 6\Wl)    J[y2,oo) 

■f[a,x) 6\V2) .l[a,y2) 

J[a,x) 6{yi) J[a,x).l[a,y2) Z(y2) 

fc-1 , , n-1 

=    F(a) + c£(-ir f       (       .../      (H^M^)     1     z^.^)..,^.^) 
n=i ■'[«.*)•'[».»«)     ./[„lW!l) f^       Z(j/i)        Z(jy„) 

+     (-1)*/       /'        •••/        ( I!' '''^ ~ /l')|^^(y1)^.(«a)...^(yfc)(with A: > 2) 
■l\a,x).l[a,yk)       J[a,y2)     ?

A
=j ^(i/i) Z(yk) 

  °° /■ /■ ,. 7?.-l    .   +,        , * 1 

-*    F(«) + c£(-ir/       /       .../      (II      7/,";" )?TT^(yi)-rf»/f.(yn),as A: ^ oo) 
„=1 ./[„,x) ./[„,„„)     ./[„,,/2) f^       Z(j/i)        Z(yn) 

(18) 

on using (16). Consequently, it follows that the assertion holds. (Note that (17) implies that 

F is determined by (/?.*, F*,fj.*, Z) because the fact that F(.r) -> 0 as x -* oo and 7(x) -» 1 as 

.T -* -oo implies in view of (17) also that 7(a) and c are determined by (h*,F*,p*, Z).) 



3    Cacoullos & Papathanasiou (1995a, 1995b) Results as Corol- 

laries 

Cacoullos & Papathanasiou (1995a) generalized the covariance identity for univariate random 

variables and used them to obtain several characterizations. Here, lower and upper variance 

bounds were derived by them using a covariance identity, appearing in Cacoullos k Papthanasiou 

(1995b). 

In this section, we establish that some of the results of the papers of Cacoullos & Papthanasiou 

(1995a,1995b) are corollaries to the results established in the last section. The following corollary 

is essentially due to Cacoullos & Papathanasiou (1995a) on taking into account what is observed 

in Remark 3.3. 

Corollary 3.1 Let h and Z be absolutely continuous Borel measurable functions (w.r.t. Lebesgue 

m,easure) and let X be an r.v. with df F such that h(X) is integrable with fi = E[h(X)) 

and E{\Z(X)\I{xe{a,b)}) < °° for every — oo < a < b < oo and satisfying the condition 

that liminfI-.oo(M-7:) - /^) > 0 i/ the right extremity of F equals oo, and the condition that 

liminfx__00(/i - h(x)) > 0 if the left extremity of F equals -oo. Further let r be the class of 

real-valued absolutely continuous functions g with Radon-Nikodym, derivative g' w.r.t. Lebesgue 

measure.   Then, we have the condition 

Cov{g(X), h(X)} = E{Z(X)g'(X)}, (19) 

met for all g with E{ \ Z(X)g'(X) \ ) < oo, if and only if 

Z{x)dF{x) = { f      [h(z) - fi}dF(z)}dx, x e 3?. (20) 
•'[x,oo) 

Corollary 3.2 Let X, </, r, Z, and h be as defined in Corollary 3.1, but additionally with 

Z(X)</(X) and h2(X) integrable, and E{Z(X)(/(X)\. ^ 0 and V[h(X)] = E[Z{X)h'(X)]. 

Then 

Vnr^X» *  E[Z(X)h'(X)] ' (21) 

if and only if 

[x,oo) 

Equality holds if and only if g(.) = cih(.) + c<i. 

Z(x)dF(x) = { I      \h{y) - E{h)]dF(y)}dx. (22) 
• 'f.T.Ool 



Proof: The result follows from Theorem 2.3 on taking F*(x) = x, x € ft. 

Remark 3.3 Corollaries 3.1 and 3.2, assuming a priori F to be absolutely continuous, were 

essentially obtained by Cacoullos & Papathanasiou (1995a, 1995b). Also, they had established 

the specialized versions of Theorems 2.2 and 2.3 when F*(x) = [x], x <= ft (where [.] refers 

to the integer part). Incidentally the arguments used by Cacoullos & Papathanasiou (1995a, 

1995b) to get their results are based on an implicit application of Fubini's theorem, and the 

authors in question seem to have not stated explicitly the conditions under which the theorem 

is applicable. In our results, we have put conditions so that the theorem works ; one could 

obviously choose different conditions for this purpose. 
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